SARASWATI MAHILA MAHAVIDYALAYA,PALWAL

SESSION:2021-22

LESSON PLAN
Name of faculty : Ms.Bijendri
Designation : Assistant Professor in Maths

Sem : Even
Class: Bsc-III(CS)
Subject : Linear Algebra

Sr.No.	Topics/chapters	Lectures	Topics of assignment/test
1.	Vector spaces, subspaces, Sum and Direct sum of subspaces, Linear span, Linearly Independent and dependent subsets of a vector space. Finitely generated vector space, Existence basis of a finitely generated vector space, Finite dimensional vector spaces, Invariance of the number of elements of bases sets, Dimensions, Quotient space and its dimension.	te Lect 20	Test of subspaces, Linear span.
2.	Homomorphism and isomorphism of vector spaces, Linear transformations and linear forms on vector spaces, Vector space of all the linear transformations Dual Spaces, Bidual spaces, annihilator of subspaces of finite dimentional vactor spaces, Null Space, Range space of a linear transformation, Rank and Nullity Theorem.	21 to Lect 40	Assignment of Dual Spaces, Bidual spaces.

3.	Algebra of Liner Transformation, Minimal Polynomial of a linear transformation, Singular and non-singular linear transformations, Matrix of a linear Transformation, Change of basis, Eigen values and Eigen vectors of linear Lect 60 transformation.	Test of Singular and non-singular linear transformations, Matrix of a linear Transformation, Change of basis.	
4.	Inner product spaces, Cauchy-Schwarz inequality, Orthogonal vectors, Orthogonal complements,Orthogonal sets and Basis, Bessel's inequality for finite dimensional vector spaces, Gram- Schmidt, Orthogonalization process, Adjoint of a linear transformation and its properties, Unitary linear transformations	Lect 61 to Lect 80	Test of Inner product spaces.

